
   
 

   
 

 
 
 

  

 

Date:      April 16th, 2020 

 To:          Dr. Bob Williams 

 From:     Anna Kelley, Amanda Przybocki, Jonathan Bowman   

 Subject:  ME 3012 Final Report 

 

Dr. Bob, 

This memo is to present our final report for the ME 3012 term project. For 

this project we choose a real-world mechanism with a single-input, single-output 

(SISO) linear system. The mechanism we chose is a robot elbow control. For this 

report you asked us to describe the systems functionality, model the system, design 

a controller to meet desired specifications, complete a open-loop and closed-loop 

analysis of the system and summarize the input effort and disturbance response of 

each controller.  

 This project uses all the knowledge learned over the course of this semester 

and uses those outcomes to find the best controller design for our project. While this 

paper does include a lot of discussion, a great deal of supplemental work is provided. 

This includes use of MatLab software as well has derivations. The appendices serve 

as a place to organize this supplemental data.  

If you have any question, please feel free to contact us.  

 

Regards, 

Anna Kelley, Amanda Przybocki, Jonathan Bowman 

Ak256116@ohio.edu, Ap852115@ohio.edu, Jb146214@ohio.edu  
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ME 3012 Term Project: Final Report 

Flex-Arm Robot Elbow Control  

 
Figure 0.1: Robot Elbow Control [3] 

Introduction: 

 A robotic elbow control consists of a lightweight flexible arm that connects to 

a wrist and an elbow joint. This allows for smooth and controlled movement of the 

arm. First off, we modeled the system below, showing the diagram as well as the 

transfer function, followed by our assumptions and discussion. After we modeled 

the open-loop transfer function using MATLAB and Simulink to accurately portray 

our results. 

 

Functional Diagram: 

 
Figure 0.2: Functional Diagram of the Robotic Arm Function [2] 
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Abstract: 

Diagram  Model 

 
 

Open Loop Transfer Function G(s) 

  
 

Closed Loop Transfer Function T(s) 

 

Damping Condition:  

Critically Damped 

Best Controller Type: PID Controller H(s) = 1 (Perfect Sensor) 

   
Closed Loop Block Diagram:  
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Free Body Diagrams (FBD) 

The FBD can be seen in Figure 1. This diagram highlights the input of torque and 

the output of θ. Fortunately, we can model this more simply as a first-order massless 

rotational mechanical system and this is shown in Figure 2. 

 

 
Figure 1: Realistic Arm with FBD Overlay 

 
Figure 2: Simplified Free Body Diagram & System Model  
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Ordinary Differential Equation (ODE) 

The ODE was provided in Dr. Bob’s Notes Book [1] and is for a springless rotational mechanical 

system. The equation is reproduced here: 

 

𝐽𝜃̈(𝑡) + 𝑐𝑅𝜃̇(𝑡) =  𝜏(𝑡) 

 
The input to this system will be torque provided from a motor and the output will be the angle of 

rotation. See Table # for the complete list of parameter values. 

 
Table 1: Parameter Values for ODE 

Parameter Symbol (Units) Value 

Damping Coefficient 𝑐𝑅 (N-sec/m) 4 

Mass Moment of Inertia 𝐽 (kg-m2) 1 

Torque 𝜏 (N-m) 2 

 

Laplace Transforms 

In order to derive our Transfer Function Gs, we need to convert our ODE to the Laplace Domain. 

First, we begin with this system’s ODE: 

 

𝐽𝜃̈(𝑡) + 𝑐𝑅𝜃̇(𝑡) =  𝜏(𝑡) 

 
Next, we take the Laplace of Both Sides with zero initial conditions and this results in: 

 

𝐽[𝑠2Ѳ(𝑠) + 0 + 0] 𝑐𝑅[𝑠Ѳ(𝑠) + 0] =  𝑇(𝑠) 

 
Then we simplify this equation: 

 

Ѳ(𝑠)[ 𝐽𝑠2 + 𝐶𝑅𝑠] =  𝑇(𝑠) 

 
We can then solve for the transfer function, Gs: 

 

𝐺𝑠 =  
Ѳ(𝑠)

 𝑇(𝑠)
=  

2

𝑠(𝑠 + 4)
 

𝐺𝑠 =  
Ѳ(𝑠)

 𝑇(𝑠)
=  

2

𝑠(𝑠 + 4)
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Open Loop Transfer Function 

Block Diagram 

The open loop block diagram is produced below in Figure 3. This shows both the input and output 

as well as the plant. The plant is our groups derived transfer function.  

 

 
Figure 3: Open loop block diagram 

 

 

Open-Loop Discussion:  

1. 2nd Order ODE – the highest power in the denominator is “2” 

 

2. Characteristic polynomial (CP) – (s2 + 4s) 

 

3. The roots of the “CP” – two open loop poles – s1 = 0, s2 = -4 

 

4. Type I system – one “s” can be factored in the G(s) denominator 

 

5. Marginally stable – due to the zero pole (which is an integrator) 

 

6. Dampening Condition – special undampened case (every plot except impulse) 

 

7. Impulse – critically dampened  

 

8. No open loop zeros – the G(s) numerator (2) – never go to zero  
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Open Loop Transfer Function 

The responses for the unit step, unit impulse and unit ramp for our system were plotted both in 

MATLAB and in the extension Simulink. The fourth response was only plotted in Simulink and it 

would be hard to model in MATLAB. The following plot comparisons will feature the same 

convention of the left plot being the output of the MATLAB command (as seen in Appendix A) 

and the right will be the output plots of the functions in Simulink (shown in Appendix C). Overall, 

the results for the two approaches agree and provide credibility for the results presented.  

 

 
Figure 4: Impulse Response Plots from Simulink & MATLAB 

 

 
Figure 5: Step Response Plots from Simulink & MATLAB 

 

 
Figure 6: Step Response Plots from Simulink & MATLAB 
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Performance Specs and Effects in the Real-World Response 

The most ideal function for a robotic arm would be one that is stable, has a small Percent Overshoot 

(PO), has a rise time that is both not too fast and not too slow and reaches a settling time quickly. 

The open loop transfer function that with a step input is shown in Figure 7. This response has 

infinite performance specifications as the step never approaches a steady state value. 

 

 
Figure 7: Annotated Step Response 

 

If left using the open loop transfer function such as stated above the robotic elbow would never 

stop turning, thus making the system effectively useless. It is likely too, though not covered in 

detail here, that this would wear on the robotic arm components unfavorably and require a lot if 

repairing. It is apparent that a Controller is needed for this arm. The open loop specifications can 

be found summarized in Table 2. 

 
Table 2: Open Loop Performance Specifications 

Performance Specification Value 

Percent Overshoot, PO N/A 

Settling Time, tS ∞ 

Rise Time, tR ∞ 

Peak Time, tP ∞ 
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Closed Loop Transfer Function 

Block Diagram 

The closed loop block diagram is produced below in Figure 8. This diagram shows the generic 

closed loop transfer function. Note that this will change in appearance as an attenuation factor or 

a prefilter is needed, and these will be shown. We will assume that we have a perfect sensor H(s) 

so this will be 1 and will be eliminated easily in the T(s) solutions. 

 

 
Figure 8: Generic Closed Loop Transfer Function 

 

Where: 

𝑅(𝑠) = 𝜃 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐴𝑛𝑔𝑙𝑒 
𝐸(𝑠) = 𝐸𝑟𝑟𝑜𝑟 
𝑈(𝑠) =  𝜏 = 𝐼𝑛𝑝𝑢𝑡 𝑇𝑜𝑟𝑞𝑢𝑒 
𝑌(𝑠) = 𝜃 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝐴𝑛𝑔𝑙𝑒 
𝑌𝑠𝑒𝑛𝑠 (𝑠) = 𝜃𝑆𝑒𝑛𝑠𝑒𝑑 =  𝑆𝑒𝑛𝑠𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝐴𝑛𝑔𝑙𝑒 
𝐺𝑐(𝑠) =  𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝐺(𝑠) = 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝐻(𝑠) = 𝑆𝑒𝑛𝑠𝑜𝑟 

 

Closed-Loop Discussion:  

1. Designing for a Critically Damped System 

2. Assuming a Perfect Sensor, H(s) 

3. See next section for a continuation of discussion. 
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Desired Performance Specifications: 

In order to gauge the effectiveness of our controllers design we will need to first describe the 

desired overall transfer functions output. For this project we chose to design a stable, critically 

damped system. Additionally, a rise time of 0.75 seconds and a settling time of 1 second was 

specified. These values can be seen summarized in Table 3. 

 

Using a critically damped system we can eliminate the percent overshoot of the response. If we 

had a large overshoot, then the robotic arm would use more torque than required and move right 

past the desired elbow angle. This could jeopardize the arms mechanical system or the 

effectiveness of the arms usage. Therefore, having no overshoot works well with our system. A 

critically damped response will have poles that are both real and the same, that is to say s1 = s2. 

 

It is expected that 1 second settling time will work well with this system. If the settling time that 

is long, then the transfer function would take a while to reach the desired steady state output. This 

could affect the application, where timely movements are required. Inversely, if the settling time 

were to be too short then the movements could seem uncontrolled and experience other errors in 

application such as the unforeseen vibrational responses.  

 
Table 3: Closed Loop Desired Performance Specifications 

Closed Loop Performance Specification Value 

Percent Overshoot, PO N/A 

Settling Time, tS 1 sec 

Rise Time, tR 0.75 sec 

Peak Time, tP N/A 

Poles (Stability) s1,2 < 0 

Poles (Critically Damped) s1 = s2 
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Desired Characteristic Equation 

 
Now the Desired Characteristic Equation can be derived from the subsequent performance 

specifications. To do that this equation can be utilized: 

 

∆𝐷𝐸𝑆(𝑠) = 𝑠2 + (2𝜔𝑛𝜉)𝑠 + 𝜔𝑛 

 

This equation introduced two variables 𝜔𝑛 and 𝜉. In order to have a critically damped system, 

𝜉 = 1. This gives 𝜔𝑛 as an unknown, but this can be determined from the desired settling time 

by using: 

𝑡𝑆 =
4

𝜉 ∗ 𝜔𝑛
= 1 𝑠𝑒𝑐𝑜𝑛𝑑 

 

We can rearrange this equation and then plug in the values of 𝜉 = 1 and 𝑡𝑠 = 1 to find the  𝜔𝑛. 

𝜔𝑛 =
4

𝑡𝑆 ∗  𝜉
=

4

1 ∗ 1
= 4 𝑟𝑎𝑑/𝑠 

 
To confirm this result, we can check the rise time tR. 

 

𝑡𝑅 =
2.16𝜉 + 0.60

𝜔𝑛
= 0.69 𝑠𝑒𝑐𝑜𝑛𝑑 

 
Originally the desired rise time was 0.75 seconds and this result is very close with a percent 

difference of only 8%. Now that we have a confirmed reasonable result, this can be substituted 

back unto the desired character equation to get: 

 

∆𝐷𝐸𝑆(𝑠) = 𝑠2 + 8𝑠 + 16 

 
Now the poles can be determined as s1,2 = -4 and this satisfies the pole requirements stated in Table 

#. A third order system will need to be designed to mimic a second order system to complete 

parameter matching for some of the controllers. To do that for this system a third pole will need to 

be introduced that is ten times the poles previously determined, therefore s3 = -40. When we 

multiply this to our desired equation, the 3rd order equation is developed: 
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In order to verify the just how closely this 3rd order equation resembles the 2nd order previously 

developed, it is plotted in MatLab. In Figure 9 the difference is shown and can be considered 

marginal. 

 

 
 

Figure 9: Comparison Plot for the desired 2nd order and 3rd characteristic polynomials. 
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Controller (Gc) Methods 

To meet the desired a controller (GC) will need to be designed. This paper will explore 3 potential 

controller designs: Lead Controller, Proportional Controller and a PID Controller. 

 

Lead Controller: 

 
A lead controller will increase stability while speeding up the transient response. Both of which is 

needed in our step input for the open loop function. To implement a lead controller, it will need to 

be put in series with the open loop transfer function, this is shown in the block diagram in Figure 

10.  

 
Figure 10: Lead Controller Block Diagram 

 
This figure also shows an attenuation correction factor (Corr) and a prefilter (Gp(s)). The 

attenuation factor corrects the output magnitude to the desired value, which in this case is a steady 

state value of 1. The implementation of a lead controller produced an unwanted zero and the 

prefilter eliminates that zero. 

 

This of course is the final system design to implement the lead controller, but several calculations 

were needed to arrive at this conclusion. Appendix D shows the complete work involved to derive 

these functions, but a summary is given in the next few paragraphs. 

 

The general form of the lead controller is: 

 
When combined in series with the open loop transfer function, the outcome for the characteristic 

polynomial is determined to be: 

 

 
 

Denominator matching can be used with the desired 3rd order characteristic polynomial equation 

to solve the variables. The variables solve to be a = 4, b = 44 and k = 160. From here, the lead 

controller is now: 
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Once combined in series the T(s) becomes: 
 

 
Once the limit of T(s) as s goes to 0 is taken, the steady state value will be 2 instead of the desired 

output of 1. To correct this a correction factor of 0.5 is needed. Additionally, it is shown that there 

is now an unwanted zero. To eliminate this a prefilter will be needed. Care will be needed in order 

to not attenuate the output so the numerator of the T(s) will need to remain 640. Therefore, the 

final T(s) becomes: 

 

 
 

Once plotted, as shown in Figure 11, it is apparent that our controller design was largely successful. 

There is no percent overshoot as desired and both the rise time and settling time remain close to 

the target values previously determined. The infinite outputs of the open loop transfer function are 

fixed by the lead controller. Table 4 summarizes the controller results.  

 

 

 
Figure 11: Lead controller closed loop transfer function result. 
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Table 4: Closed loop performance specifications results 

Closed Loop Lead Controller Result Value 

Percent Overshoot, PO N/A 

Settling Time, tS 1.4846 sec 

Rise Time, tR 0.8418 sec 

Peak Time, tP N/A 

Poles S1,2 = -4; S3 = -40 

Zeros N/A 
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Proportional Controller: 

 

A proportional controller is a type of linear feedback control system. The controlled variable has 

a correction applied that is proportional to the difference between the desired value and the 

measured value. To implement a proportional controller, it will need to be put in series with the 

open loop transfer function, this is shown in the block diagram in Figure 12.  

 
Figure 12: Proportional Controller Block Diagram 

 

To determine the controller transfer function, Gc(s) was implemented using the variable K. 

 

 
The variable for K determined based upon the desired closed loop function is found using 

denominator parameter matching. The K = 8 is then used to find T(s). The closed loop transfer 

function determined using a proportional controller is shown in the equation below.  

 

 
The performance specifications were determined using the variables in the equation above.  

 

Table 5: Proportional controller performance specifications. 

Performance Specification Closed Loop 

Percent Overshoot, PO 10.8% 

Settling Time, tS 2 s 

Rise Time, tR .42 s 

Peak Time, tP 1.11 s 

ess 0 

Poles S1,2 = -4 

Zeros N/A 
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By evaluating the controller performance in simulation, the performance specifications below were 

validated using Figure 13. This shows that with a proportional controller the steady state value of 

1 can be achieved at a settling time of 2 s.  

 

 
Figure 13: Proportional controller open-loop vs closed-loop plot comparison.  

 

 

PID Controller: 

 

A PID controller stands for Proportional, Integral, Derivative of error (E(s)). PID is a control loop 

mechanism employing feedback, these are widely used in industrial control systems since they are 

simple and effective. 
 

 
Figure 14: PID Controller Block Diagram 

 

 

The figure above shows the Simulink for the PID closed- loop controller.  
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The general form of the PID controller is: 

 
The simplified version of the general form is: 

 
Below you can see the delta design equation which is explained and solved on the bottom of page 

11.  

 
 

We then plugged the general form equation into the general transfer function. Then compared the 

denominator of the transfer function to the delta designed equation to find the values of the 

unknowns. The value of KD = 22, KP = 168, and to be KI = 320. From here the new PID controller 

equation is: 

 

 
We then plug this into the general PID equation to get the following: 

 

 
After this we found the Pre-filtered transfer function. The job of the Pre-filtered GP(s) is to knock 

out the unwanted zeros. The GP(s) equation is: 
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After finding all the equations above, we then graphed them all on the same axis to show the 

comparison between the open loop, closed loop, and the closed loop with Pre-filtered. This can all 

be found below in Figure 15. A you can see from the figure the open loop and the prefiltered loop 

both approach zero.  

 

   
Figure 15: PID controller open-loop vs closed-loop plots comparison. 

 

 

 

Table 6: PID controller performance specifications. 

Performance Specification Open Loop 

Values 

Closed Loop 

Values 

Closed Loop 

Values with Pre-

Filter 

Percent Overshoot, PO N/A 10.5% N/A 

Settling Time, tS ∞ 0.56 1.048 

Rise Time, tR ∞ 0.13 0.724 

Peak Time, tP ∞ 1.07 1 

Poles S1 = -4; S2 = 0; S1,2 = -4; S3 = -40 S1,2 = -4; S3 = -40 

Zeros N/A S = -4, S = -3.64 N/A 
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Closed Loop Input Effort 

Now that the controllers have been designed, it is important to compare the input effort of each 

controller. This is best analyzed in Simulink. A smaller amount of input effort is desired as this 

will lessen the required resources. These resources will likely be electricity usage in our robotic 

arm. 

 

Lead Controller: 

For the lead controller the Simulink configuration is shown in Figure 16. The effort scope is located 

between the lead controller and the open loop transfer function. 

 

 
Figure 16: Lead controller block diagram with input effort scope. 

 
The lead controller will require a larger amount of input effort at the beginning of the response. 

This will then converge to zero, where not much effort is needed after 0.8 seconds. This effort 

plot can be seen in Figure 17. 

 

 
Figure 17: Lead Controller input effort over time plot. 
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Proportional Controller: 

 

For the proportional controller, the Simulink configuration is shown in Figure 18. 

 

 
Figure 18: Proportional controller block diagram with input effort scope. 

 

 

The input effort of the system is shown below in Figure 19. This shows that it takes a large about 

of effort right away and then balances out at zero around 2 seconds.  

 

 
Figure 19: Proportional controller input effort over time plot. 
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PID Controller: 

 

For the PID controller the Simulink configuration is shown in Figure 20. 

 

 
Figure 20: PID controller block diagram with input effort scope. 

 
 

The PID controller will require a larger amount of input effort at the beginning of the response. 

This will then converge to zero, where not much effort is needed after 1.5 seconds. This effort plot 

can be seen in Figure 21. 

 

 
Figure 21: PID controller input effort over time plot. 
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Closed Loop Disturbances 

Disturbances are unaccounted effects in the system, and these can show up in many ways such as 

friction, gravity effects, wind drag or wearing of the product. In our project we are likely to 

experience frictional disturbances while the arm is rotating. For this reason, the effect of these 

disturbances will need to be analyzed to ensure the best controller is chosen. Simulink is used in 

this section as it has a few advantages over its MatLab counterpart. Mainly that it can handle two 

input sources, one for the disturbance and the other for reference. 

 

Lead Controller: 

 
For the lead controller the Simulink configuration is shown in Figure 22. 

 

 
Figure 22: Lead controller block diagram with disturbance input. 

 
The output for this configuration is shown in Figure 23. This plot shows that the steady state 

value has been altered due to the disturbance. This difference is small and in its steady state 

value in the output response is 1.1374.  

 

 
Figure 23: Lead controller output plot with disturbance. 
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Proportional Controller: 

 

For the proportional controller, the Simulink configuration is shown in Figure 24. 

 

 
Figure 24: Proportional controller block diagram with disturbance input. 

 
 

The output for this configuration is shown in Figure 25. This plot shows that a disturbance 

causes the system to go well above the steady state value of 1. This is not an ideal controller and 

should not be used.  

 

 
Figure 25: Proportional controller output plot with disturbance. 
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PID Controller: 

 

For the PID controller the Simulink configuration is shown in Figure 26. 

 

 
Figure 26: PID controller block diagram with disturbance input. 

 
 

The output for this configuration is shown in Figure 27. As you can see there is no difference 

between the pre-filtered plot and the plot for the disturbance. Its steady state value in the output 

response is still 1. 

 

 
Figure 27: PID controller output plot with disturbance. 
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Final Controller Decision 

The PID controller will work the best for this system. This controller meets or closely matches the 

desired performance specs of a steady state output of 1, a rise time of 1 second and a setting time 

of 0.72 seconds. While all the controller methods met these specifications closely, the PID 

controller was able to do this with the least amount if input effort. Additionally, the PID controller 

has the best disturbance response showing almost no effect on the output plot. This is an especially 

good thing to have with our arm that as mentioned previously this will likely see multiply kinds of 

disturbances.  
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Appendix A: MATLAB Code 

Impulse function  
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Unit Step Function 
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Unit ramp function  
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Characteristic Equation Order Comparisons 
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Closed Loop - Lead Controller (with Pre-Filter and Corr) vs. Open Loop Gs 
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Closed Loop - PID Controller (with Pre-Filter) vs. Open Loop G(s) 
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Appendix B: MATLAB Plots 

Impulse function 

 
 

 
 
Unit Step Function 
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Unit ramp function  
 

 
 

 

Characteristic Equation Order Comparison 
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Closed Loop - Lead Controller (with Pre-Filter and Corr) vs. Open Loop Gs 
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Appendix C: Simulink Results 

Impulse Function 
 

- Simulink Block Diagram 

 

 
 

- Simulink Output Plot 
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Unit Step Function 
 

- Simulink Block Diagram 

 
 

- Simulink Output Plot 
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Ramp step function  
 

- Simulink Block Diagram 

 

 

 
- Simulink Output Plot 
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Unit ramp function  
 

- Simulink Block Diagram 

 
- Simulink Output Plot 
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Closed Loop with a Lead Controller 

 
- Simulink Block Diagram 

 
 

- Simulink Output Plot 
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Appendix D: Lead Controller Calculations 

Generic Lead Controller: 

 
Closed Loop Transfer Function is: 

 
 

A perfect sensor is assumed so H(s) = 1 and this then reduces to: 

 
 

Plug in the values of Gc(s) and G(s) this Closed Loop Transfer Function Becomes: 
 

 
Expand: 

 
Simplify: 

 
 

Use Denominator Matching 
Start with the equations: 
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Now compare the orders: 

 
 

This system of 3 equations and 3 unknowns solves for the variables: 

 
 

This results in the lead controller of: 
 

 
 

The closed loop transfer function then becomes: 
 

 
The steady state value results in: 
 

 
 
Since this does not approach 1, we need an output attenuation factor: 
 

 
 
Now we multiply this into the T(s): 

 
 
To check this, we can see that: 
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Finally, there’s a zero that needs to be eliminated in the numerator. This can be done using the 
pre-filter:  

 
 
Once this is multiplied by the Closed Loop Function, the new closed loop function becomes: 

 


